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Abstract 11 is shown that ‘mean-field finite-size scaling theory’ can be adjusted and applied 
to sequences of approximations that do not obey the well known power laws of finite-size 
scaling. The proposed modification of the theory seems to be well directed to the sequence 
of Banter’s variational approximations. This sequence of approximations shows a novel 
feature according to wlich exponential laws appear in places where power laws should be 
expected, but the modified scaling theory still yields relations from which non-classical 
critical exponents can be estimated. Thus, two techniques for the estimation of the critical 
exponent p are suggested from the finite-order variational approximations. These techniques 
are applied to the zero-field king model on the square lattice using the sptematic series of 
the Baxter-Tsang systems and excellent estimates of /3 are obtained correct up to 13 signifi- 
cant figures. 

1. Introduction 

We report here an application on ‘finite-size scaling’ techniques to the sequence of 
variational approximations of Baxter [ 1-31 for the zero-field king model on the square 
lattice. 

Following the notions of mean-field finite-size scaling theory or coherent-anomaly 
method (CAM) of Suzuki [&7] we provide, substantial evidence that the variational 
method of Baxter may yield the best practical estimation of the critical exponent of 
spontaneous magnetization p. Thus, the present investigation is a test of two techniques 
for the estimation of the critical exponent /3. The first of these techniques is the above- 
mentioned coherent-anomaly method of Suzuki and the second is a new proposal for 
an apparently more effective method based on estimates of spontaneous magnetization 
at the exact critical temperature. 

The method is applied to the zero-field case using a simplification of Baxter’s method 
developed by Tsang [8]. The sequence of approximations is generated by solving numeri- 
cally Baxter-Tsang systems. Sequences of estimates are obtained for spontaneous mag- 
netization at the exact critical temperature, for the approximate critical temperature 
and analysing the data close to these for the associated ‘classical amplitudes’. 

In section 2, the ideas of Suzuki [4-71 and the formulation of finite-size scaling 
theory of Fisher [9-1 I ]  are studied and extended in a fashion that permits exponential 
factors to replace the commonly used power laws. Section 3 briefly describes Baxter- 
Tsang systems. A parametric representation of the method together with an analysis 
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of our numerical results are presented in section 4 where the necessity of the above- 
mentioned generalization to include exponential factors becomes obvious. Finally our 
conclusions are summarized in section 5. 

A Malakis and S S Martinos 

2. Generalized mean-field approximations and scaling theory 

Suzuki [4-71 has proposed a powerful method for the study of critical phenomena 
which is called the coherent-anomaly method (CAM). The method estimates critical 
exponents by using a sequence of mean-field approximations, called also 'canonical 
approximations' [6], which exhibit classical behaviour in finite-order. This method has 
been applied to various critical phenomena including two- and three-dimensional king 
models [4-7, 12-14], quantum spin systems [IS], spin glasses [16], percolation [16], 
and so on. 

Here we discuss the basic idea of Suzuki and focus upon the estimation of  the 
critical exponent p for which Baxter's approximations will prove to provide the most 
efficient kanonical sequence'. We assume that the 'canonical sequence' of approxima- 
tions has the following three properties: 

(i) In order n the approximation shows a critical temperature T,, and 

lim Tv= T: 
n-CE 

where T,* is the exact critical temperature of  the real (infinite) king system. 

exhibit classical behaviour with an exponent b=i,  i.e. 
(ii) The spontaneous magnetization m(n, T )  for all finiteorder approximations 

m(n, T )  -fin(6,(T))' T-r T.," (2) 

where 

In the limit n 4 c o  the true critical behaviour is obtained and the critical exponent (ZD 
Ising) is /3 = 1/8, i.e. 

n t ( ~ ) - ( ~ ( ~ ) ) p  T-. T: (4) 

with 

(E) A third assumption not considered by Suzuki but useful for our purpose con- 
cerns spontaneous magnetization at the exact critical temperature, i.e., it is assumed 
that T: is approached from above (Tc,,> T:) and therefore m(n, TZ) exists, i.e. 

m(n, T:)#O n#m. (6)  
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According to Suzuki [4] the amplitude ti?" of the classical singularity and the approxi- 

(7) 

(8) 

mate critical temperature have the following n-dependence 
f i n  ,,[d-P)/w 

T.,. - T," f an-'/' 

5-1 T- TCl-". (9)  

with the expectation that v is the critical exponent of the correlation length, i.e. 

However, Suzuki [4, 131 eliminates from (7) and (8) the n"'-dependence and the follow- 
ing asympotic relationship is assumed: 

Thus, one may define successive estimates of p by 

where 

and expect that 

lim &(n+ 1, n)  = /3. 
"-.m 

These formulae are the basic ingredients of CAM and as pointed out by Suzuki [4-71 
are inspired by Fisher's finite-size scaling theory, to which we now turn, assuming that 
the finite-size scaling hypothesis can be extended to a sequence of canonical 
approximations. 

Following Barber [ l l ]  we give here two formulations of the finite-size scaling 
hypothesis for spontaneous magnetization. First we assume that 

m(n, T )  -n"Q(n""&(T)) n+m, E(T)*O (14) 

and in order to reproduce the true critical behaviour (4) we require that in the limit 
n - w  

QW * x p  as x+m. ( 1 5 )  

So that the true critical behaviour is reproduced if 

6J = -p / v .  (16) 

In finite-order we expect a classical behaviour so we require 

Qc-4 - (xc - x ) ~  x-x, (17) 
where 

x,=nl/'AT,. 
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to obtain 
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which implies for the amplitude !?I, a relation asymptotically equivalent to (7), i.e. 

Now, i t  is well known [ 1 I ]  that scaling (14) has as a necessary conclusion that the 'shift 
exponent' ,I defined by 

AT.,.-n-' (21) 

is equal to l / v ,  so that formulae (IO) and (13) should apply. 
But, apart from the estimation formula (1 1) used in CAM, finite-size scaling provides 

a further result which we shall find most useful. According to (14) and property (iii) 
of the sequence of approximations we may write. 

m(n, T:)-n-""Q(O) (22) 

from which the equality k= l / v  implies that 

d n ,  T:) - (ATc,")' 

so defining successive estimates by 

we should also expect that 

lim P i (n+ l ,n )=P .  

Furthermore, from (22) and (20) we may write 

"-.-a 

iEn  - (m(n, T: ))CP-@)!fl 

and try to estimate /3 using the estimates 

Of course, from the definitions (27), (24) and (1 1) we find 

P ~ ~ . ~ . . ( n + I , n ) = P ' P , ~ . ( n +  l , n ) / { B + P ~ . . ( n + l , n ) - P a ( n + l , n ) }  (28) 

and the sequence P,s,,.* has as limit the critical exponent fi  if both sequences Plil and 
p,.. have as limit the exponent p.  However, in applications using the Baxter method it 
i s  much easier to calculate the terms of sequence (24). 

The second formulation of finite-size scaling replaces E ( T )  by E.(T) (see Barber 
[ 1 I]), i.e. 

m(n, T )  -n"&?"&.(T)) n+cc E A T )  -4 (29) 
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and applying a similar reasoning one can obtain all previous formulae for the sequences 
p,j,, p,.* and p,j,.,,,*, provided that one assumes again the equality I= I / v .  But, unlike 
scaling (14), the equality I = I / \ *  is not now a necessary conclusion of scaling (29) (see 
Barber [ 1 I]). Therefore scaling (29) does not necessarily imply that the three sequences 
have as their common limit the critical exponent p. 

To close this secti0.n we reformulate these scalings in a way that avoids the explicit 
use of the power law dependence (8) and (21) and permits exponential factors which 
appear for the sequence of Baxter variational approximations. We can do this by simply 
writing in place of (14) and (29). 

m(n, T) - f ( n ) Q ( g ( n ) G V  n+m s(T)-O (30) 

ni(n, T) -.7b)&(n)cn(T)) n+m dT)--tO (31) 

and 

respectively. The functions f ( n ) ,  g ( n )  introduced here replace the power-law forms n m  
and n"' (see (29)), respectively. In a straightforward way we may now repeat the steps 
of the previous reasoning and find that condition (16) is now replaced by 
f (n)gP(n)+aE%*. Of course, this is a more general form and permits even exponential 
functions of n. For instance, we could take/(n)-exp(-h') and g(n) -exp[(I/p)ne], 
with I, O>O. 

Thus, from scaling ansatz (30) we may easily obtain, using a reasoning analogous 
to that used for scaling (14), that 

.?,-(g(n))@-P (32) 

d n ,  C)- Q(o)(g(n))-P (33) 

and 

from which we may assume the validity of (26) and obtain sequence p,.,,.. having p as 
limit. It is also a necessary conclusion of scaling (30) that 

lim (g(n)AT,,-) =cE%* (34) 
n-m 

and this is sufficient to establish that the three sequences p,*, p,.* and p>s,,.. have a 
common limit, which is the true critical exponent p if scaling (30) is obeyed. 

Again scaling ansatz (31) is more general and the sufficient condition (34) for the 
common limit p of the three sequences is not a necessary conclusion. The asymptotic 
behaviour of m. and in(n, T , )  is now given by 

m.- (g(n1)d-P (35) 
and 

nt(n, E ) - & ( g W T . , .  )(g(n))-P (36) 
respectively. One should note here that the above relations do not necessarily imply 
the asymptotic forms (IO) and.(23) and therefore the validity of the limits (13) and 
(25) is not disclosed without further assumptions. The corresponding sequences may 
or may not tend to the true critical exponent p and this may now depend also on the 
way ?"=g(n)AT,," approaches its limit if this limit is not a constant #O. However, if 

lim =CO 
n-m 
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we may apply the x-+m behaviour in (36)  io obtain (23)  so we expect (25)  to be valid. 
I n  conclusion scaling ( 3 1 )  does not necessarily imply a common limit p for the three 
scqucnces Plbr p,.. and /3,j,,,n- and it appears that the sequence p,.. has more general 
applicability. 

A Malakis and S S Martinos 

3. The Baxter-Tsang sequence of variational approximations 

‘In 1968 Baxter [ I ]  developed a sequence of variational approximations for the 
monomer-dimer problem on the square lattice. The method was generalized to the 
Potts model by Kelland 1171 and to a square iRF (interaction-round-a-face) model with 
row and column reversal symmetry by Baxler [ 3 ] .  This very important method and the 
related concept of ‘corner transfer matrices’ (chapter 13 in Baxter’s book [ 1 8 ] )  has 
several applications and it  was soon used in various directions including series expan- 
sions on the square and other planar lattices [ 19-21], generalizations to problems with 
broken lattice symmetry [20 ,22]  and also to three-dimensional models [23] .  It continues 
to give new results [24]  not easily obtainable by other methods. 

The finife-order variational approximations of Baxter exhibit classical critical behav- 
iour as first noted by Baxter 131 but the direct application of these approximations for 
the estimation of the true critical behaviour has not been yet clarified, although Kelland 
[I71 use the method for the estimation of /3 for the Potts model. Also we should note 
that Tsang [SI observed a crossover phenomenon and has pointed out that the data of 
the approximations support very well a scaling hypothesis. 

In terms of the ‘corner transfer matrices’, A(a), and the ‘half-row transfer matrices’, 
F(a, b ) ,  Baxter’s variational approximations for the square zero-field Ising model are 
described by the system [ 3 , 8 ]  

( 3 7 4  1 F(a, b)Az(b)F(b,  a) =A2(a) 
b 

and 

w(n, b, a‘, b’)F(a, b)A(b)F(b,  b’)A(b’)F(b’, a‘) = KA(u)F(u, a’)A(a’) (376)  
h.h’ 

where a, b, a’ and 6’ take the spin values of + I  or - I  and the Boltzmann factor of a 
face for the zero field Ising model on the square lattice, with T the temperature and ks 
the Boltzmann constant is given by 

( 3 8 4  

(38b) 

,,,fa, b, a,, 6’) = Z-lab+db’t.?d+bb’)/4 

with 

z = exp( -2J/ks T) 
where J is the nearest-neighbour interaction energy coefficient. 

magnetization is given by [ 3 ]  
In (37b) K is the partition function per site and the corresponding spontaneous 

Eo a TJ A4(a) 
C. Tr A4(a) ’ 

m(T) = (39) 

In this form we may assume that the involved matrices are 2’” x 2’“ and for each value 
of m(=O, 1 , 2 , .  , . ) we obtain a system of a large (-2’’“) number of equations 
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representing the 'riith-order' variational approximation. It should be pointed out that 
since Baxter's approximations are derived from a variational principle [3], m defines 
the order of approximation. However, from the graphical representation of the 'corner 
transfer matrices' [3] ,  rn may also be interpreted as the system size of the scaling theory. 

One may simplify the problem by using the symmetries of the model and a represen- 
tation in which A(a)  are diagonal [3] ,  but for the zero-field case Tsang [8] has reduced 
the number of,equations to only n = m +  2. Using Tsang representation the variational 
approximations in order n(=2,3, .  , .) are determined by the system [SI 

h2 +tan-' - cr1-c 
I -  I c,-' - c, c;' - c I I /  

Cr '+c l+ tan - ,  - hi n- I 

2 tan-'- 

= (n - j +  1/2)n j =  1 ,2 , .  . . , , n  ( 4 0 4  

( 4 0 ~  

(404 

where 

h, = {2+ (C,Z+ C.-2)( 1 + 22 - 2)/( 1 + 2)} 

hz= {2 + (Ci + Cy2)( 1 - 22 - 2')/( 1 + z2)} 

and 

The spontaneous magnetization is now given by [SI 

Using a Newton-Raphson method Tsang [8] has solved system (40) for a range of 
values z below the critical point (i,=O.414213 562 373. .  .) and has also calculated 
the approximate critical temperatures for n=2-20. It was found that the estimates of 
spontaneous magnetization converge rapidly to the exact ones for z<z, and that also 
the approximate T,. approaches the exact T,* with an exponential law and not a power 
law! 

In the next section we solve again system (40) for n=2-20 but now we focus upon 
the estimation of m(n, T:) and by analysing the data of the classical behaviour near 
TC," we also obtain the amplitudes rEn so that all sequences of p-estimates mentioned 
earlier can be calculated. 

4. Numerical estimates and asymptotic analysis 

A suitable temperature parameter may be defined by 

t=cosech4(W/kBT)- 1. 

Following Tsang [8] we now express I with the help of (40c) as 

t = r ( z ) (  1 - h;/2) / (Ci  + CL') ( 4 3 4  

r(z)=2(1+22-2) (1  +zZ)l/(1 -22)4. (43W 
From the numerical solutions it is verified (see also [8]) that for all finite values of n, 
h2 vanishes at the approximate critical point, i.e. at T,, (or &,"). Thus the parametric 

where 
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critical temperature fC," is related to C, by 

tC," = r(Zc., I/( c,' + C). (444 

It is also verified that as n-+co, C . 4  and z,.,-+z:=$-l. Therefore the asymptotic 
behaviour of tc., is determined from that of C,,, i.e. 

t , , -  r(zc,,)c2 - r(i:)c,'= 8 $ ~ , 2 .  ( a b )  

In the limit n-+m we obtain the exact critical temperature 

t Z = O  orkBT~/J=2.26918531421 . . .  . (444 

Furthermore, we can easily show that 

(Tz- TI )/Tz=R(T2)(tZ-ti) TI -+ T2 

with 

k8Tsinh5(2J/kBT) 
8Jcosh(2J/ksT) ' 

R(T)= 

(454 

We may now transform the classical behaviour (2) in t-representation, i.e. 

W ,  T) - ~ ~ " [ ~ ( T ~ , " ) t ~ " l ~ [ ~ " ( f ) l ~ = ~ ~ ~ [ r " ( ~ ) l ~  t- t , , .  (464 

where 

M ) =  (tc,n-t)/tc.". (466) 

in the two representations should It follows that the classical amplitudes f in and 
satisfy 

fiL= MT,,. 1'~h. (47) 

Assuming that (IO) is obeyed and since P < f l  the above transformation shows 
in (47)), that fTz,-tco whereas fii-+O as n+m. Furthermore (because of the term 

assuming that (23) is also obeyed we may write 

mL-m(n, T:) - 1:". (48) 

Thus in a fashion analogous to (11) and (24) we may define the sequences 
P k ( n + l , n )  and P;>,.(n+l,n) by 

P X n  + 1, n) =log(fipI:+ l / 4 ) / I o g ( f c , n +  I /le,") 

P b ( n  + 1 I n )  = log[nr(n + 1, TF ) /m(n .  T: )l / log(tG,n+ I /Ln ) 

(49) 

(50) 

respectively. 
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Table I .  The critical temperatures f<,,, T ,  and C, at the critical point for n-2-20. 

729 1 

n le," k e T d J  C" 

2 0.388 836 1828857E+00 2.425 665 733 9651 0.170 341 6699163E+00 
3 0.692 2 16 20 I 1 54 I E - 0 I 
4 0.135336061 03798-01 2.2753149184824 0.344701 21986838-01 

0.557 083 5 I9 7377E - 01 2.294 044 370 7466 

5 
6 
7 
8 
9 
IO 
I I  
I2 
13 
14 
I5 
I6 
17 
18 
19 
20 

0.413977213 71618-02 
0.145897425 83798-02 
0.568 044 548 17428-03 
0.38  469 714 41688-03 
0,106265 11883188-03 
0.497 207 596 4870E- 04 
0.242 348 677 44898-04 
0.122322305 34478-04 
0.636 378 960 74958-05 
0.339989 5769465E-05 
0.185973 940 4011E-OS 
0.103 896420 33038-05 
0.591 57832392158-06 
0.342 709 619 99468-06 
0.201 693 527 2402E-06 
0.120433 5446552E-06 

2.271 066 630 1302 
2.269 848 986 0314 
2.269 443 794 8837 
2.269 293 839 4380 
2.269 233 676 7387 
2.269 207943 1881 
2.269 196 344 I184 
2.269 190 881 4368 
2.269 188 210 5545 
2.269 186 861 6038 
2.269 186 160 6346 
2.269 185 787 0761 
2.269 185 583 4577 
2.269 185470 1902 
2.269 185 406 0097 
2.269 185 369 0259 

0.191 089 581 9001E-01 
0.113 517 550 16458-01 
0.708 479 103 28918-02 
0.459079853 5011E-02 
0.306465320 1948E-02 
0.209 633 645 62798- 02 
0.146 357 574 43158- 02 
0.1039798072890E-02 
0.749 988 705 53358-03 
0.548 1885244944E-03 
0.405 436 974 2955E- 03 
0.303 038 415 86598-03 
0.228 667 039 79718-03 
0.174 044 626 01278 - 03 
0.133 519 121 50068-03 
0.103 17422823808-03 

In table 1, the critical temperatures t.,. and Tc,n are given together with the values 
of C, at the critical point for n=2-20. The results given in this table are accurate to 
I3 significant figures and agree completely with the 11 significant figures given by Tsang 
[8]. Since t , ,  and C. were obtained by independent extrapolations the equation (44a) 
served as a good test of our accuracy. 

I n  table 2, the spontaneous magnetizations at the exact critical temperature 
m(n, T:) and the amplitude A. (in T-representation) and (in &representation) are 

Table L Spontaneous magnetizations m h .  T : )  at the exact critical temperature and the 
classical amplitudes fi. and fi; for n=2-20. 

n m(n, T:) in. IFt; 

2 0.751 099 850 4534 0.434 82027308+01 0.104279 5149EtOl 
3 0.614379008 1302 0.100 262 97838+02 0.103 358 38718 t 01 
4 0.522 I83 883 3766 0.186 527 7951E+02 0.965 792 9102E+00 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 

0.453 864 995 7972 
0.400 483 776 7501 
0.357313 8123122 
0.321 539 653 0038 
0.291 345 945 2471 
0.265 493 897 4786 
0.243 101 2604967 
0.223 518 350 9501 
0.206 253 696 6728 
0. I90 927 179 7873 
0.177739294 I010 

0.311 515 1085E+02 
0.486 378 1389E+02 
0.724 583 0610E +02 
0.10422944668+03 
0,145 880 41978+03 
0.199701 4567Et03 
0,268 398 3029E+03 
0.355 153 52588+03 
0.463 695 4047E+03 
0.598 375 2085E+03 
0.764 253 7426Ef03 

0.895 92261858+00 
0.831 452 97168+00 
0.773 2107238E+OO 
0.720 761 6538E+OO 
0.673 447 16608+00 
0.630 627 08508+00 
0.591 735 62628+00 
0.556287 1057Et00 
0.523 868 0482E+00 
0.494 126 5624Ei.00 
0.466 762 26338+00 

16 01649502881579 0.967 198 1236E 4 03 0.441 517 5984Ei00 
17 0 1538656090666 0.121 3989831E+04 0418 1706482Et00 
18 0 143 825 494 4958 0.151 2445175E-04 0 396 529 2324E T O O  
19 0.1346973727837 0.187 I14 9431 E T  01 0.376 426 l031Er00 
20 0.1263702105853 0.230 160 59858104 0.357 7150218Er00 



1292 A Malakis and S S Martinos 

Table 3. Three sequences ofestimates for thecritical exponent p (see definitions @4), (I I) 
and (27)). The extrapolations below correspond to three assimments of the parameter a,. 
of the algorithm (51). 

ntl 8,An + 1, n )  P&+ I, n )  P , d n  + I ,  n )  

3 0.096 937 162 923 974 
4 0.1 I6 I29 674 759 230 0.056612 157 129964 0.103776621 017411 
5 0.118713941405179 0.065 792 831 585 284 0,107 351 608 843 302 
6 0.120 090 073 267 272 ~ 0.072 394 784 823 732 0,109632 194945979 

0. IO9 216 518263 688 ' 0.045 879 842 373 226 

7 0.120957 417 577 197 
8 0.121 558 993 689 614 
9 0.122 002 593 699 642 
IO 0.122 343 969 455 855 . 
II 0.122615 I I9982 613 
12 0. I22 835 833~3 12 747 
13 0.123 019049972836 
14 0.123 I73609 102463 
15 0.123 305 762 877 845 
16 0.123 420 062 500 901 
17 0.123 519 902 971 903 
18 0.123 607 865 432 535 

0.077 280 992 I 1  5 565 
0.081 047 084 848 797 
0.084 052 600 461 788 
0.086519 l07354,21,6,, 
0.088 588 999 426 468 
0.090 357 689 848,638,, 
0.091 891 534490371 
0.093 238 185 562961 
0.094432819604937~ 
0.095 502 025 046 360 
0.096466310 141 064 
0.097 341 790 I I5 782 

0.111 240263429201 
O.lI2448025382373 
0.113395850202845 

. . ,, ,  0.114164 140290161 
0.1 I4 802 549 22261 I 
0.115343 544913996 
0.115 809336 163 923 
0.1 I6 215 678015 797 
0.116 574 088 773 357 
0.116 893 204763 371 
0.117 179642309684 
0. I I7 438 565 043 487 

19 OlU685956921875 0098 141 294459 135 0 117674068?15510 
20 0123755742818376 0 098 875 243 870 353 0 I17 889 446 327 698 

a," = 0 0 122 368 316 209 902 
0 122 372 136 153 307 

0 121 610 165887981 
0 121 691 398595983 

0 124958 I I6 126477 

0 124 691 527 579 979 
0 124697897973314 

0124593813476846 
0 124617215062 186 

0 1?4 998 573 727 193 

0 I I I 663 526 924 864 
0 I I O  324 950 746 3t4 

0 I I I 906 961 614 679 
0 I12 132258605 I21 

0 I25 409 370 433 708 

a,,, = I 

a. from (52) 
0124998518109150 0125413962122192 0 124 950 966 885 229 

given, also for n=2-20. The amplitudes t% and tTzL were obtained using the formulae 
(2) and (46), respectively. These values are related by (47) and they agree to 10 signifi- 
cant figures which is also the accuracy we required for the amplitudes. It may be noted 
here that to obtain the required accuracy in the amplitudes we had to work very close 
to the critical temperatures tea, and also use two independent extrapolation techniques 
in each case. The values of m(n, TZ) are also accurate to 13 significant figures, as tested 
by increasing the accuracy of our solutions. 

Table 3 shows the three sequences Pm.(n + I ,  n) ,  P,&+ 1, n) and P,*,p(n+ 1, n) 
defined in (24), ( I  1) and (27), respectively. The convergence of these sequences, and in 
particular of the last two, to the true critical exponent P(=0.125) is rather slow. 

To accelerate the convergence of the sequences we have applied the so-called alter- 
nating &-algorithm defined in 1111 

where Qf-') = O  and P!') = P  ( I =  I ,  . . . , N )  are the first Navailable terms of the original 
sequence. The algorithm was applied for three assignments of the parameter a,,, namely, 
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a,,,=O (Shanks transform). a,= 1 (Wynn's €-algorithm) and finally (alternating E- 
algorithm). 

a,),=-[l-(-l)'"]/2. (52) 

In almost all cases considered in this paper assignment (52) seems to have produced 
the best estimates. We have therefore given in our tables, below each sequence, the last 
column (m=max) of extrapolation according to ( S l a ) ,  (516) and (52), and only in 
cases where we have remarkable differences we give also the extrapolations for the other 
two assignments. 

One may be inclined from table 3 to conclude that the three sequences of estimates 
have as their common limit the true critical exponent p=O.125. However, two of the 
assignments for a,,, give for the sequence p,,(n + 1, n )  extrapolates not very close to 
0.125. 

We now tum to a different asymptotic analysis of our results. According to Tsang 
[SI the values of C, fit extremely accurately to the formula: 

C.= 1.681 792 8304 exp[-(4.934 802 2005n-4.626 377 0635)'"l. (53) 

We therefore assume that similar asymptotic laws are followed not only for tC," (because 
of (446)), but also for m(n, T:) and r d ,  i.e., we assume 

t,," - v(z , , , )c~ - A ,  exp[-(B,n + r,)'!'] (544 

in(n, t=o)-A,,. exp[-(B,,.n+r,,.)"'] (546) 

tii:- A,;l exp[-(E,,m+ r,3f)''2]. (54c) 

The asymptotic behaviour of rTt, should then follow from the combination of (54a), 
(54c) and (47). Alternatively, we may assume that 

A. -An exp[+(B,gz + r,,)'/'] (544  

and obtain m: from ( 5 4 4 ,  (54a) and (47). We can now see that if (23) is valid, then 
the coefficients B,,,. and B, should satisfy 

p= (a,. /E,)''* (55) 

from which p may be obtained if B,,. and B, are known. An analogous relationship 
should give p from B,,I and B, ,  and fcom (IO) we should also have 

p = - ( E , ~ / & ) ' ~ .  (56) 

In order to apply these relationships we should calculate the coefficients in (54). We 
can do this by fitting exactly the functions (54) for every three values of n. For instance 
we may define the sequences A,,,+), E,.(n) and T,&) (n=  3, . . . , 19) as the values 
that fit exactly three successive estimates of m*, i.e. m(n- 1, T:), m(n, T,) and 
m(n+ 1, T:) to (546). The resulting sequences for m* (546) and for rR (54d) are given 
in tables (4) and (5) ,  respectively. 
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Table 4. Fitting of the values nr(n, T:) for n=2-20 to the asjmptotic formula (546). 
Extrapolalions given correspond to the assignment (52) for the parameter U!,,. 

~~~ 

3 1.468 495 5 I4 41 0883 
4 1,463034785 386955 
5 1.462 328 620 143 789 
6 1.462213635881 570 
7 1.462 191 683 275 632 
8 1.462 186954284099 
9 1.462 I85832702361 
IO 1.462185544762219 
I I  1.462 185 465 732~823 
12 1.462 185 442 762 806 
13 1.462 I85435738473 
14 1.462 185 433 499 323 
15 1.462 185432755854 
16 1.462 185 432 496 575 
17 1.462 185 432 403 406 

~ 

0.309 795 998 073 952 
0308 584517377469 
0.308 449 124 289 896 
0.308 429 445 884 962 
0.308 426 021 067 317 
0.308 425 338 695 964 
0.308425 187417561 
0.308 425 150 821 306 
0,308425 141 296414 
0.308 425 138 657 725 
0.308 425 137 885 371 
0308 425 I37 648 882 
0.308 425 137 573 231 
0.308 425 137 547 748 
0.308 425 137 538 882 

-0,170 081 959 714 988 
-0.172 926 335 472 207 
-0.173 379 313 268722 
-0.173 464 91 6 4 I 1 396 
-0,173483 252943640 
-0.173 487 590 768 238 
-0,173488 704062198 
-0.173 489 010 044268 

-0.173489 126566479 
-0.173 489 135 343 910 
-0.173489 138268 179 
-0.173489 139279328 
-0.173 489 I39 645 443 
-0,173489139781675 

- 0 . 1 7 3 4 ~ ~ 9 2 m 2 s o  

I S  1462 18513?360009 0.308425 137534877 -0 173489 139847235 
19 I462 185J32377661 0.308425137536460 -0 173489 139819738 

1462 I85432338565 0.308425 137533816 -0 I73489139865874 

Table 4 shows that (54b) is very well satisfied even for small values of n and that 
the corresponding coefficients converge very fast to their limits. The same is true for 
the sequence C. (not shown) for which, in almost complete agreement with (53), we 
obtain 

C,= 1.681 792 830 508 exp[-(4.934 802 200 545n-4.626 377 063 OI)”*] (530 
We may now apply (55) to obtain~an estimate of p. From (54a) and (53’) we have 
B,=4~4.934802200545 and from table 4 we take as the best value of E,,.= 
0.308425137534, so the resulting estimate for p is according to ( 5 5 )  

p = 0. I24 999 999 999 987. (57) 
This excellent estimate outlaws any reservations that the values of spontaneous magneti- 
zation at the exact critical point obeys the law (23) with ,8 the true critical exponent. 
Furthermore, an inspection of table 4 shows that an estimate with several significant 
figures of E,* could be obtained using only, say, the first five variational approximations. 
Since this is also true for E,  (not shown) one could obtain several significant figures of 
p using only the first 5 or 6 variational approximations. This point may be of great 
interest since the method could be applied to several unsolved problems where the 
critical exponent is not exactly known. 

Table 5 shows that the situation for the amplitudes fin is unconvincing. If the 
assumed behaviour (54d) is true then it is at least surprising that even for n=20 the 
asymptotic behaviour has not settled. This effect is related to the fact that the parameter 

continues fo increase even for n=20. This parameter may be identified with E. used in 
section 2 if (35) is written as an equality, so that g(n)  is specified if the functional 
dependence of iit. is known. Since L seems to tend to infinity one could recall the 
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Table 5. Fitting of the classical amplitudes A,, for n = 2 2 0  to the formula (54d). 

Order A,* B,$ r., 
3 0.804 019 7650 3.5182729157 -4.187 5596051 
4 0.924 766 01 62 3.344 556 6436 -4.352 950 6585 
5 1.0114482616 
6 1.079 546 7553 
7 I. 136 380 0502 
8 1,1856705567 
9 1.2295105210 
IO 1.269 187 1638 
1 1  1.305 5527919 
12 1.339 205 8875 
13 1.370 585 5768 
14 1.400 025 9948 
15 1.427788 3021 
16 1.454081 5354 

3.252 653 0767 
3.194 5922258 
3.153 6896 295 
3.1228136421 
3.0984009156 
3.078 452 9992 
3.061 748 9276 
3.047492 8017 
3.035 139 6179 
3.024301 1471 
3.0146920985 
3.006 097 2338 

-4.515 649 5226 
-4.667 755 5001 
-4.8t0 443 7563 
-4.945 370 9846 
-5.073 797 8338 
-5,196645 2802 
-5.314607 5359 
-5.428 230 8549 
-5.537 957 7909 
-5.644 157 3273 
-5.747 141 7316 
-5.847 1799733 

17 1.479 076 0860 2 998 350 6266 -5.944 5060171 
18 1.502 912 3047 2.991 322 1911 -6 039 322 3775 
19 1.525 -08 7644 2.984 907 8837 -6 131 811 4731 

discussion at the end of section 2 and observe that our results support scaling (31) and 
not scaling (30). Thus sequences based on classical amplitudes A., such as (1 1) or (49), 
could, but not necessarily, approach in the limit the true critical exponent p. The 
situation seems worse if we apply (54c) to our data for PE:. In this case the sequence 
for B,*f (not shown) exhibits an erratic behaviour around a value 0.26 with a very slow 
tendency to increase for n> 14. However, the estimates for B,*c do not seem to tend to 
the value 0.3084 . . . which will be in accord with (48) and give the true critical exponent. 
To clarify completely this situation and its consequences for the scaling laws (30) and 
(31) further study would be required, but a convincing explanation will be given below. 

To overcome the ‘erratic’ behaviour of the classical amplitudes we suggest an 
improvement of the asymptotic relation (48), i.e. we assume that 

~fi:-n’tn(n, T:). (59) 

In fact our data support (59) with p =0.25. The asymptotic relations (54a), (546) and 
(59) may now be used in order to accelerate the convergence of sequences (50) and 
(49). Details of the necessary modifications are given in appendix 1. It is shown there, 
that sequence (50) can be replaced by an equivalent sequence (A.la) which shows a 
very fast convergence (see table Al )  to the true critical exponent. Now, in connection 
with sequence (49), based on the classical amplitudes, there is also defined in appendix 
1 a modified sequence (A.26) which is included in table (A2) together with sequence 

A major improvement is observed for the new sequence (A.26) and the three extrapo- 
lations seem now to point to the same value, namely, the true critical exponent p. Thus 
we may conclude that all sequences of &estimates defined in this paper tend to the 
true value of the critical exponent and the apparently ‘erratic’ behaviour of the sequences 
based on the classical amplitudes is an effect of the combination of the power law in 
(59) with the exponential laws in (54). 

We close this section by pointing out that the asymptotic formulae (59) and (546) 
with the help of (47), ( 5 4 ~ )  and (55) determine the functional dependence of fi0 on n. 

(49). 
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From (35) one can specify the asymptotic behaviour of an arbitrarily introduced 
function g(n)  

The function A n )  is specified by requirement A n )  ~ g ( g ) - ~  which produces the true 
critical exponent from scaling (31). 

5. Conclusions 

In the present paper we have reformulated the ‘mean-field scaling theory’ in a way that 
seems very well directed to Baxter’s variational approximations. 

It has been shown that the approximate critical temperatures, Tea, and spontaneous 
magnetization at the exact critical point, m(n,  T:),  both obey, in an almost perfect 
way, similar exponential laws from which the true critical exponent p can be obtained 
with impressive accuracy. The situation is more complex for the classical amplitudes and 
the corresponding estimates are slowly converging. However, our analysis conclusively 
supports the coherent-anomaly method of Suzuki [ 4 7 ] .  

Thqs the present paper adds a surprising and unexpected element of generality in 
the mean-field finite-size scaling theory of Suzuki [4] by showing that ‘exponential-law’ 
scaling is possible when the ‘canonical approximations’ approach the critical point 
faster than any power law. It is not known whether this novel feature is a peculiar 
characteristic of Baxter’s variational approximations, but one should now suspect that 
other sequences of mean-field approximations (obtained self-consistently) may as well 
show up similar novel features. The resulting behaviour seems to be in contradiction 
with finite-size scaling, and until a well founded explanation is given, one should be 
careful in interpreting the ‘order of approximation’ simply as the size of a ‘finite system’. 
One should always have in mind that mean-field theories may crucially depend on the 
way self-consistency is applied. 

However, if the occurrence of these ‘perfect exponential laws’ is not a coincidence 
but a general feature of Baxter’s series, then the proposed method may prove to be the 
most efficient tool for calculating non-classical exponents. This hope is supported by 
our earlier observation that several significant figures of p could be obtained using only 
the first 5 or 6 variational approximations. It is well known that several variational 
approximations can be generated for a variety of unsolved problems [3] for which, of 
course, Tsang’s reduction of the number of equations does not apply. We are currently 
applying the idea of this paper to the king model with second-neighbour interaction 
where the critical exponent p is known by universality. This may well be a necessary 
step in order to establish the generality of the exponential laws observed in Baxter’s 
variational sequence and may also provide guidance to additional difficulties that may 
beencountered in otherproblems in which aconvenient I-representation is not available. 

Finally, we mentioned that Tsang [8] used log-log plots of logm(n, t )  versus 
log s.(t) in order to estimate the critical exponent p. This method shows very well a 
crossover phenomenon but it has not been clarified whether and how one could obtain 
from these plots a systematic series of estimates converging to the true value of the 
critical exponent. 
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Table AI. Sequences of estimates for the critical exponent /I as defined in (50) and (A,I). 
Note the fast convergence of the modified sequence PL. Three cases of the extrapolation 
algorithm (51) are given. 

Order P :"* a:. 
3 0.103408998550813 0.116 183827099838 
4 
5 
6 
7 
8 
9 
IO 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 

u,=O 

a,"= I 

0.1 14 909 887 467 937 
0.118375550811 812 
0,119978593514722 
0.120916 102334786 
0.121 542 293 165 194 
0.121 995 372 547265 
0.122340673097077 
0.122613546 184953 
0.122 835 052 858 757 
0.123018650 101 289 
0.123 173 398 293 576 
0.123 305 648 952 527 
0. I23 4 I9  999 766 907 
0,123 519867 138467 
0.123 607845751691 
0,123 685 943 193 266 
0.123 755 737 868 767 

0.124 736 379 476 796 
0.124 745293861 349 

0.124 700 654 383 830 
0.124 703 207 263 248 

0.123215401 892822 
0. I24 5 I 2  880 719 43 1 
0.124840926297 178 
0.124941 369226117 
0.124976389784 199 
0. I 2 4  989 8 I9  61 9 462 
0,124 995 362 803 963 
0,124 997 789 838 923 
0,124998905532819 
0.124999439919981 
0.124 999 705 063 426 
0.124999 840718481 
0.124999912025 329 
0.124 999 950419 803 
0.124999971 543662 
0.124999983394271 
0.124999990 161 384 

0.124 999 997 205 088 
0.125000000001 709 

0.124999999974519 
0.124 999 999 888 064 

U,, from (52) 0.124861 315447512 0.124 999 999 960 884 
0.125 000 000 000 927 0.124 858 373 496 780 

Appendix 1. 00 the convergence of &estimates 

As mentioned in section 4, the convergence of the sequences estimating the critical 
exponent p (such as (1  I), (24), (49) and ( S O ) )  is rather slow. We present here modifi- 
cations of these sequences which have the effect of accelerating their convergence. These 
modifications are inspired from the asymptotic forms (54) and (59). First we replace 
sequence (50) by 

(A. la)  

(A. lb)  

and the correction factors 6. will be chosen to depend on c,,, in such a way that the 
new sequence (A.1) will have the same limit as sequence (50). A general condition for 
this requirement is, of course 

(A. lc )  
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Table AZ. Sequences of estimates for the critical exponent fl as defined in (49) and (A.%). 
Note the major improvement achieved by the assumption (59) which implies the modifi- 
cation of (49) lo (A.2). The three extrapolations point now to the true value. 

Order 

3 
4 
5 
6 
7 
8 
9 
IO 
I 1  
12 
13 
14 
I 5  
16 
17 
18 
19 
20 

P6, 
0.004 566 623 209 540 
0.047 943 670 620 345 
0,063 396 501 393 298 
0.071 606 863 104235 
0.076 989 254 944 916 
0.080 929 203 457 13 I 
0.084WI 633 682 103 
0.086 495 839 637 807 
0.088 577 888 284 282 
0.090 352 178 564 940 
0.091 888 710 065 085 
0.093 236 696 393 774 
0.094432014339612 
0.095 501 579 06 1906 
0.096 466 060 107 108 
0.097 341 643 394 726 
0.098 141 216076960 
0.098 875 187 040 355 

0.046718 103 996983 
0.093 684 547 901 027 
0.107157951266711 
O.lI2958557893882 
0.1 I6 I20 I66 18 5780 
0,118099687738533 
0. I19 450 225 367 539 
0. I20 425 546 023 690 
0.121 158780506393 
0.121 726826232027 
0.122 177 347 854 357 
0.122541 504800205 
0.122 840 525 946 662 
0.123 089 359 928 759 
0.123298821 744673 
0,123 476 915 130 654 
0.123 629 679 0 38 094 
0.123 761 746806 221 

a,=O 0.114620395 141 755 0.124967 509770696 
0.124 967 547 328 187 

a," - I 0.112868 157807973 0.124921 171 906689 
0.124 973 923 856 405 

0, from (52) 0.1 18 923 I54 945 770 0.125039017000132 
0.125039 157855336 

0,114631 726475007 

0.1 I3 522 674 I67 067 

0.125 I15 263 333392 

The choices for these factors can be derived from the assumed asymptotic forms (54a) 
and (54b) and are 

A,-32 (A.ld) 

6.=(1 +clog-*t;,)"* (A.le) 

with 

Table A.l contains sequence (50) and sequence (A.]). Since the asymptotic forms (54a) 
and (546) are very well obeyed the new sequence (A.l)  shows, as expected, as very fast 
convergence to the true critical exponent. 

Finally, we modify sequence (49) introducing, as above, correction factors 6. and 
taking (59) into account, i.e. 
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and 

(A.2b) 
0.25 log(n/n + I ) p,&+ 1, n) =B,d(n  + 1, n) + 

6,+,  logz."+l-6"logt;,' 

One can easily show that the correction term in (A.2b) will vanish as n-"'and therefore 
the new sequence (A.26) tends to the same limit as sequence (49). 

Table A.2 contains sequence (49) and sequence (A.2) with the same assignments 
for the factors 6, given in (A. ld- f ) .  The improved sequence strongly suggests that the 
coherent-anomaly method of Suzuki [4-71, in spite of its slow convergence, also applies 
to the Baxter variational sequence. 
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