Variational approximations and mean-field scaling theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 277283
(http://iopscience.iop.org/0305-4470/27/22/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:26

Please note that terms and conditions apply.

Variational approximations and mean-field scaling theory

A Malakis and S S Martinos
Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, GR 157 84-Zografos, Athens, Greece

Received 4 February 1994, in final form 8 June 1994

Abstract

It is shown that 'mean-field finite-size scaling theory' can be adjusted and applied to sequences of approximations that do not obey the well known power laws of finite-size scaling. The proposed modification of the theory seems to be well directed to the sequence of Baxter's variational approximations. This sequence of approximations shows a novel feature according to which exponential laws appear in places where power laws should be expected, but the modified scaling theory still yields relations from which non-classical critical exponents can be estimated. Thus, two techniques for the estimation of the critical exponent β are suggested from the inite-order variational approximations. These techniques are applied to the zero-field Ising model on the square lattice using the systematic series of the Baxter-Tsang systems and excellent estimates of β are obtained correct up to 13 significant figures.

1. Introduction

We report here an application on 'finite-size scaling' techniques to the sequence of variational approximations of Baxter [1-3] for the zero-field Ising model on the square lattice.

Following the notions of mean-field finite-size scaling theory or coherent-anomaly method (CAM) of Suzuki [4-7] we provide substantial evidence that the variational method of Baxter may yield the best practical estimation of the critical exponent of spontaneous magnetization β. Thus, the present investigation is a test of two techniques for the estimation of the critical exponent β. The first of these techniques is the abovementioned coherent-anomaly method of Suzuki and the second is a new proposal for an apparently more effective method based on estimates of spontaneous magnetization at the exact critical temperature.

The method is applied to the zero-field case using a simplification of Baxter's method developed by Tsang [8]. The sequence of approximations is generated by solving numerically Baxter-Tsang systems. Sequences of estimates are obtained for spontaneous magnetization at the exact critical temperature, for the approximate critical temperature and analysing the data close to these for the associated 'classical amplitudes'.

In section 2, the ideas of Suzuki [4-7] and the formulation of finite-size scaling theory of Fisher [9-11] are studied and extended in a fashion that permits exponential factors to replace the commonly used power laws. Section 3 briefly describes BaxterTsang systems. A parametric representation of the method together with an analysis
of our numerical results are presented in section 4 where the necessity of the abovementioned generalization to include exponential factors becomes obvious. Finally our conclusions are summarized in section 5 .

2. Generalized mean-field approximations and scaling theory

Suzuki [4-7] has proposed a powerful method for the study of critical phenomena which is called the coherent-anomaly method (CAM). The method estimates critical exponents by using a sequence of mean-field approximations, called also 'canonical approximations' [6], which exhibit classical behaviour in finite-order. This method has been applied to various critical phenomena including two- and three-dimensional Ising models [4-7, 12-14], quantum spin systems [15], spin glasses [16], percolation [16], and so on.

Here we discuss the basic idea of Suzuki and focus upon the estimation of the critical exponent β for which Baxter's approximations will prove to provide the most efficient 'canonical sequence'. We assume that the 'canonical sequence' of approximations has the following three properties:
(i) In order n the approximation shows a critical temperature $T_{\mathrm{c}, n}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{c, n}=T_{c}^{*} \tag{1}
\end{equation*}
$$

where T_{c}^{*} is the exact critical temperature of the real (infinite) Ising system.
(ii) The spontaneous magnetization $m(n, T)$ for all finite-order approximations exhibit classical behaviour with an exponent $\dot{\beta}=\frac{1}{2}$, i.e.

$$
\begin{equation*}
m(n, T) \sim \bar{m}_{n}\left(\varepsilon_{n}(T)\right)^{\beta} \quad T \rightarrow T_{\mathrm{c}, n} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{n}(T)=\left|\frac{T_{\mathrm{c}, n}-T}{T_{\mathrm{c}, n}}\right| \tag{3}
\end{equation*}
$$

In the limit $n \rightarrow \infty$ the true critical behaviour is obtained and the critical exponent (2 D Ising) is $\beta=1 / 8$, i.e.

$$
\begin{equation*}
m(T) \sim(\varepsilon(T))^{\beta} \quad T \rightarrow T_{c}^{*} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\varepsilon(T)=\left|\frac{T_{c}^{*}-T}{T_{c}^{*}}\right| \tag{5}
\end{equation*}
$$

(iii) A third assumption not considered by Suzuki but useful for our purpose concerns spontaneous magnetization at the exact critical temperature, i.e., it is assumed that T_{c}^{*} is approached from above ($T_{\mathrm{c}, n}>T_{c}^{*}$) and therefore $m\left(n, T_{c}^{*}\right)$ exists, i.e.

$$
\begin{equation*}
m\left(n, T_{c}^{*}\right) \neq 0 \quad n \neq \infty \tag{6}
\end{equation*}
$$

According to Suzuki [4] the amplitude \bar{m}_{n} of the classical singularity and the approximate critical temperature have the following n-dependence

$$
\begin{align*}
& \bar{m}_{n} \sim n^{(\beta-\beta) / v} \tag{7}\\
& T_{\mathrm{c}, n} \sim T_{c}^{*}+\alpha n^{-1 / v} \tag{8}
\end{align*}
$$

with the expectation that v is the critical exponent of the correlation length, i.e.

$$
\begin{equation*}
\xi \sim\left|T-T_{c}^{*}\right|^{-\nu} . \tag{9}
\end{equation*}
$$

However, Suzuki $[4,13]$ eliminates from (7) and (8) the $n^{1 / v}$-dependence and the following asympotic relationship is assumed:

$$
\begin{equation*}
\bar{m}_{n} \sim\left(\frac{T_{\mathrm{c}, n}-T_{c}^{*}}{T_{c}^{*}}\right)^{\beta-\hat{\beta}} \tag{10}
\end{equation*}
$$

Thus, one may define successive estimates of β by

$$
\begin{equation*}
\beta_{m}(n+1, n)=\dot{\beta}+\frac{\log \left(\bar{m}_{n+1} / \bar{m}_{n}\right)}{\log \left(\Delta T_{\mathrm{c}, n+1} / \Delta T_{\mathrm{c}, n}\right)} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta T_{\mathrm{c}, n}=\left(T_{\mathrm{c}, n}-T_{\mathrm{c}}^{*}\right) / T_{\mathrm{c}}^{*} \tag{12}
\end{equation*}
$$

and expect that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta_{\bar{m}}(n+1, n)=\beta \tag{13}
\end{equation*}
$$

These formulae are the basic ingredients of CAM and as pointed out by Suzuki [4-7] are inspired by Fisher's finite-size scaling theory, to which we now turn, assuming that the finite-size scaling hypothesis can be extended to a sequence of canonical approximations.

Following Barber [11] we give here two formulations of the finite-size scaling hypothesis for spontaneous magnetization. First we assume that

$$
\begin{equation*}
m(n, T) \sim n^{\omega} Q\left(n^{1 / v} \varepsilon(T)\right) \quad n \rightarrow \infty, \varepsilon(T) \sim 0 \tag{14}
\end{equation*}
$$

and in order to reproduce the true critical behaviour (4) we require that in the limit $n \rightarrow \infty$

$$
\begin{equation*}
Q(x) \sim x^{\beta} \quad \text { as } x \rightarrow \infty \tag{15}
\end{equation*}
$$

So that the true critical behaviour is reproduced if

$$
\begin{equation*}
\omega=-\beta / v \tag{16}
\end{equation*}
$$

In finite-order we expect a classical behaviour so we require

$$
\begin{equation*}
Q(x) \sim\left(x_{\mathrm{c}}-x\right)^{\beta} \quad x \rightarrow x_{\mathrm{c}} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{\mathrm{c}}=n^{1 / v} \Delta T_{\mathrm{c}, n} \tag{18}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
m(n, T) \sim n^{(\beta-\beta) / v}\left(\frac{T_{\mathrm{c}, n}}{T_{\mathrm{c}}^{*}}\right)^{\beta}\left(\varepsilon_{n}(T)\right)^{\dot{\beta}} \quad T \rightarrow T_{\mathrm{c}, n} \tag{19}
\end{equation*}
$$

which implies for the amplitude \bar{m}_{n} a relation asymptotically equivalent to (7), i.e.

$$
\begin{equation*}
\bar{m}_{n} \sim\left(\frac{T_{\mathrm{c}, n}}{T_{\mathrm{c}}^{*}}\right)^{\beta} n^{(\beta-\beta) / \nu} \tag{20}
\end{equation*}
$$

Now, it is well known [11] that scaling (14) has as a necessary conclusion that the 'shift exponent' λ defined by

$$
\begin{equation*}
\Delta T_{\mathrm{c}, n} \sim n^{-\lambda} \tag{21}
\end{equation*}
$$

is equal to $1 / v$, so that formulae (10) and (13) should apply.
But, apart from the estimation formula (11) used in CAM, finite-size scaling provides a further result which we shall find most useful. According to (14) and property (iii) of the sequence of approximations we may write.

$$
\begin{equation*}
m\left(n, T_{c}^{*}\right) \sim n^{-\beta / v} Q(0) \tag{22}
\end{equation*}
$$

from which the equality $\lambda=1 / v$ implies that

$$
\begin{equation*}
m\left(n, T_{c}^{*}\right) \sim\left(\Delta T_{\mathrm{c}, n}\right)^{\beta} \tag{23}
\end{equation*}
$$

so defining successive estimates by

$$
\begin{equation*}
\beta_{m^{*}}(n+1, n)=\frac{\log \left[m\left(n+1, T_{c}^{*}\right) / m\left(n, T_{c}^{*}\right)\right]}{\log \left(\Delta T_{c, n+1} / \Delta T_{c, n}\right)} \tag{24}
\end{equation*}
$$

we should also expect that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta_{m}^{*}(n+1, n)=\beta \tag{25}
\end{equation*}
$$

Furthermore, from (22) and (20) we may write

$$
\begin{equation*}
\bar{m}_{n} \sim\left(m\left(n, T_{c}^{*}\right)\right)^{(\beta-\beta) / \beta} \tag{26}
\end{equation*}
$$

and try to estimate β using the estimates

$$
\begin{equation*}
\beta_{\bar{m}, n^{*}}(n+1, n)=\dot{\beta} /\left\{1+\frac{\log \left(\bar{m}_{n+1} / \bar{m}_{n}\right)}{\log \left[m\left(n, T_{c}^{*}\right) / m\left(n+1, T_{c}^{*}\right)\right]}\right\} . \tag{27}
\end{equation*}
$$

Of course, from the definitions (27), (24) and (11) we find

$$
\begin{equation*}
\beta_{\bar{m}, m^{*}}(n+1, n)=\dot{\beta} \beta_{m^{*}}(n+1, n) /\left\{\dot{\beta}+\beta_{m^{*}}(n+1, n)-\beta_{m}(n+1, n)\right\} \tag{28}
\end{equation*}
$$

and the sequence $\beta_{\bar{m}, m^{*}}$ has as limit the critical exponent β if both sequences $\beta_{\bar{m}}$ and $\beta_{m^{*}}$ have as limit the exponent β. However, in applications using the Baxter method it is much easier to calculate the terms of sequence (24).

The second formulation of finite-size scaling replaces $\varepsilon(T)$ by $\varepsilon_{n}(T)$ (see Barber [11]), i.e.

$$
\begin{equation*}
m(n, T) \sim n^{\omega} \bar{Q}\left(n^{1 / v} \varepsilon_{n}(T)\right) \quad n \rightarrow \infty \quad \varepsilon_{n}(T) \rightarrow 0 \tag{29}
\end{equation*}
$$

and applying a similar reasoning one can obtain all previous formulae for the sequences $\beta_{m}, \beta_{m^{*}}$ and $\beta_{n, m m^{*}}$, provided that one assumes again the equality $\lambda=1 / v$. But, unlike scaling (14), the equality $\lambda=1 / v$ is not now a necessary conclusion of scaling (29) (see Barber [11]). Therefore scaling (29) does not necessarily imply that the three sequences have as their common limit the critical exponent β.

To close this section we reformulate these scalings in a way that avoids the explicit use of the power law dependence (8) and (21) and permits exponential factors which appear for the sequence of Baxter variational approximations. We can do this by simply writing in place of (14) and (29).

$$
\begin{equation*}
m(n, T) \sim f(n) Q(g(n) \varepsilon(T)) \quad n \rightarrow \infty \quad \varepsilon(T) \sim 0 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
m(n, T) \sim \bar{f}(n) \bar{Q}\left(\bar{g}(n) \varepsilon_{n}(T)\right) \quad n \rightarrow \infty \quad \varepsilon_{n}(T) \rightarrow 0 \tag{31}
\end{equation*}
$$

respectively. The functions $f(n), g(n)$ introduced here replace the power-law forms n^{ω} and $n^{t / v}$ (see (29)), respectively. In a straightforward way we may now repeat the steps of the previous reasoning and find that condition (16) is now replaced by $f(n) g^{\beta}(n) \rightarrow \alpha \in \mathfrak{R}^{*}$. Of course, this is a more general form and permits even exponential functions of n. For instance, we could take $f(n) \sim \exp \left(-\lambda n^{\theta}\right)$ and $g(n) \sim \exp \left[(\lambda / \beta) n^{\theta}\right]$, with $\lambda, \theta>0$.

Thus, from scaling ansatz (30) we may easily obtain, using a reasoning analogous to that used for scaling (14), that

$$
\begin{equation*}
\bar{m}_{n} \sim(g(n))^{\dot{\beta}-\beta} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(n, T_{c}^{*}\right) \sim Q(0)(g(n))^{-\beta} \tag{33}
\end{equation*}
$$

from which we may assume the validity of (26) and obtain sequence $\beta_{\bar{n}, m^{*}}$ having β as limit. It is also a necessary conclusion of scaling (30) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(g(n) \Delta T_{\mathrm{c}, n}\right)=c \in \mathfrak{R}^{*} \tag{34}
\end{equation*}
$$

and this is sufficient to establish that the three sequences $\beta_{\bar{m}}, \beta_{m^{*}}$ and $\beta_{m, m^{*}}$ have a common limit, which is the true critical exponent β if scaling (30) is obeyed.

Again scaling ansatz (31) is more general and the sufficient condition (34) for the common limit β of the three sequences is not a necessary conclusion. The asymptotic behaviour of \bar{m}_{n} and $m\left(n, T_{c}^{*}\right)$ is now given by

$$
\begin{equation*}
\bar{m}_{n} \sim(\bar{g}(n))^{\beta-\beta} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(n, T_{c}^{*}\right) \sim \bar{Q}\left(\bar{g}(n) \Delta T_{\mathrm{c}, n}\right)(\bar{g}(n))^{-\beta} \tag{36}
\end{equation*}
$$

respectively. One should note here that the above relations do not necessarily imply the asymptotic forms (10) and. (23) and therefore the validity of the limits (13) and (25) is not disclosed without further assumptions. The corresponding sequences may or may not tend to the true critical exponent β and this may now depend also on the way $\bar{c}_{n}=\bar{g}(n) \Delta T_{\mathrm{c}, n}$ approaches its limit if this limit is not a constant $\neq 0$. However, if

$$
\lim _{n \rightarrow \infty} \bar{c}_{n}=\infty
$$

we may apply the $x \rightarrow \infty$ behaviour in (36) to obtain (23) so we expect (25) to be valid. In conclusion scaling (31) does not necessarily imply a common limit β for the three scquences $\beta_{m^{m}}, \beta_{m^{*}}$ and $\beta_{m_{1}, m^{*}}$ and it appears that the sequence $\beta_{m^{*}}$ has more general applicability.

3. The Baxter-Tsang sequence of variational approximations

'In 1968 Baxter [1] developed a sequence of variational approximations for the monomer-dimer problem on the square lattice. The method was generalized to the Potts model by Kelland [17] and to a square IRF (interaction-round-a-face) model with row and column reversal symmetry by Baxter [3]. This very important method and the related concept of 'corner transfer matrices' (chapter 13 in Baxter's book [18]) has several applications and it was soon used in various directions including series expansions on the square and other planar lattices [19-21], generalizations to problems with broken lattice symmetry [20,22] and also to three-dimensional models [23]. It continues to give new results [24] not easily obtainable by other methods.

The finite-order variational approximations of Baxter exhibit classical critical behaviour as first noted by Baxter [3] but the direct application of these approximations for the estimation of the true critical behaviour has not been yet clarified, although Kelland [17] use the method for the estimation of β for the Potts model. Also we should note that Tsang [8] observed a crossover phenomenon and has pointed out that the data of the approximations support very well a scaling hypothesis.

In terms of the 'corner transfer matrices', $A(a)$, and the 'half-row transfer matrices', $F(a, b)$, Baxter's variational approximations for the square zero-field Ising model are described by the system $[3,8]$

$$
\begin{equation*}
\sum_{b} F(a, b) A^{2}(b) F(b, a)=A^{2}(a) \tag{37a}
\end{equation*}
$$

and
$\sum_{b, b^{\prime}} w\left(a, b, a^{\prime}, b^{\prime}\right) \boldsymbol{F}(a, b) A(b) F\left(b, b^{\prime}\right) \boldsymbol{A}\left(b^{\prime}\right) \boldsymbol{F}\left(b^{\prime}, a^{\prime}\right)=\kappa \boldsymbol{A}(a) \boldsymbol{F}\left(a, a^{\prime}\right) \boldsymbol{A}\left(a^{\prime}\right)$
where a, b, a^{\prime} and b^{\prime} take the spin values of +1 or -1 and the Boltzmann factor of a face for the zero field Ising model on the square lattice, with T the temperature and k_{B} the Boltzmann constant is given by

$$
\begin{equation*}
w\left(a, b, a^{\prime}, b^{\prime}\right)=z^{-\left(a b+a^{\prime} b^{\prime}+a a^{\prime}+b b^{\prime}\right) / 4} \tag{38a}
\end{equation*}
$$

with

$$
\begin{equation*}
z=\exp \left(-2 J / k_{\mathrm{B}} T\right) \tag{38b}
\end{equation*}
$$

where J is the nearest-neighbour interaction energy coefficient.
In (37b) κ is the partition function per site and the corresponding spontaneous magnetization is given by [3]

$$
\begin{equation*}
m(T)=\frac{\Sigma_{a} a \operatorname{Tr} A^{4}(\mathrm{a})}{\Sigma_{a} \operatorname{Tr} A^{4}(a)} \tag{39}
\end{equation*}
$$

In this form we may assume that the involved matrices are $2^{m} \times 2^{m}$ and for each value of $m(=0,1,2, \ldots)$ we obtain a system of a large $\left(\sim 2^{2 m}\right)$ number of equations
representing the ' m th-order' variational approximation. It should be pointed out that since Baxter's approximations are derived from a variational principle [3], m defines the order of approximation. However, from the graphical representation of the 'corner transfer matrices' [3], m may also be interpreted as the system size of the scaling theory.

One may simplify the problem by using the symmetries of the model and a representation in which $A(a)$ are diagonal [3], but for the zero-field case Tsang [8] has reduced the number of equations to only $n=m+2$. Using Tsang representation the variational approximations in order $n(=2,3, \ldots)$ are determined by the system [8]

$$
\begin{gather*}
2 \sum_{l=1}^{n-1} \tan ^{-1} \frac{C_{l}^{-1}+C_{l}}{C_{j}^{-1}-C_{j}}+\tan ^{-1} \frac{h_{1}}{C_{j}^{-1}-C_{J}}+\tan ^{-1} \frac{h_{2}}{C_{j}^{-1}-C_{j}} \\
=(n-j+1 / 2) \pi \quad j=1,2, \ldots, n \tag{40a}
\end{gather*}
$$

where

$$
\begin{equation*}
h_{1}=\left\{2+\left(C_{n}^{2}+C_{n}^{-2}\right)\left(1+2 z-z^{2}\right) /\left(1+z^{2}\right)\right\}^{1 / 2} \tag{40b}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{2}=\left\{2+\left(C_{n}^{2}+C_{n}^{-2}\right)\left(1-2 z-z^{2}\right) /\left(1+z^{2}\right)\right\}^{1 / 2} \tag{40c}
\end{equation*}
$$

The spontaneous magnetization is now given by [8]

$$
\begin{equation*}
m(T)=\prod_{j=1}^{n-1} \frac{1-C_{j}^{4}}{1+C_{j}^{4}} \tag{41}
\end{equation*}
$$

Using a Newton-Raphson method Tsang [8] has solved system (40) for a range of values z below the critical point ($z_{\mathrm{c}}=0.414213562373 \ldots$) and has also calculated the approximate critical temperatures for $n=2-20$. It was found that the estimates of spontaneous magnetization converge rapidly to the exact ones for $z<z_{c}$ and that also the approximate $T_{\mathrm{c}, n}$ approaches the exact T_{c}^{*} with an exponential law and not a power law!

In the next section we solve again system (40) for $n=2-20$ but now we focus upon the estimation of $m\left(n, T_{c}^{*}\right)$ and by analysing the data of the classical behaviour near $T_{\mathrm{c}, n}$ we also obtain the amplitudes \bar{m}_{n} so that all sequences of β-estimates mentioned earlier can be calculated.

4. Numerical estimates and asymptotic analysis

A suitable temperature parameter may be defined by

$$
\begin{equation*}
t=\operatorname{cosech}^{4}\left(2 J / k_{\mathrm{B}} T\right)-1 . \tag{42}
\end{equation*}
$$

Following Tsang [8] we now express t with the help of (40c) as

$$
\begin{equation*}
t=r(z)\left(1-h_{2}^{2} / 2\right) /\left(C_{n}^{2}+C_{n}^{-2}\right) \tag{43a}
\end{equation*}
$$

where

$$
\begin{equation*}
r(z)=2\left(1+2 z-z^{2}\right)\left(1+z^{2}\right)^{3} /\left(1-z^{2}\right)^{4} \tag{43b}
\end{equation*}
$$

From the numerical solutions it is verified (see also [8]) that for all finite values of n, h_{2} vanishes at the approximate critical point, i.e. at $T_{\mathrm{c}, n}$ (or $t_{\mathrm{c}, n}$). Thus the parametric
critical temperature $t_{\mathrm{c}, n}$ is related to C_{n} by

$$
\begin{equation*}
t_{c, n}=r\left(z_{c, n}\right) /\left(C_{n}^{2}+C_{n}^{-2}\right) \tag{44a}
\end{equation*}
$$

It is also verified that as $n \rightarrow \infty, C_{n} \rightarrow 0$ and $z_{\mathrm{c}, n} \rightarrow z_{\mathrm{c}}^{*}=\sqrt{2}-1$. Therefore the asymptotic behaviour of $t_{c, n}$ is determined from that of C_{n}, i.e.

$$
\begin{equation*}
t_{c, n} \sim r\left(z_{\mathrm{c}, n}\right) C_{n}^{2} \sim r\left(z_{\mathrm{c}}^{*}\right) C_{n}^{2}=8 \sqrt{2} C_{n}^{2} . \tag{44b}
\end{equation*}
$$

In the limit $n \rightarrow \infty$ we obtain the exact critical temperature

$$
\begin{equation*}
t_{\mathrm{c}}^{*}=0 \quad \text { or } k_{\mathrm{B}} T_{\mathrm{c}}^{*} / J=2.26918531421 \ldots \tag{44c}
\end{equation*}
$$

Furthermore, we can easily show that

$$
\begin{equation*}
\left(T_{2}-T_{1}\right) / T_{2}=R\left(T_{2}\right)\left(t_{2}-t_{1}\right) \quad T_{1} \rightarrow T_{2} \tag{45a}
\end{equation*}
$$

with

$$
\begin{equation*}
R(T)=\frac{k_{\mathrm{B}} T \sinh ^{5}\left(2 J / k_{\mathrm{B}} T\right)}{8 J \cosh \left(2 J / k_{\mathrm{B}} T\right)} \tag{45b}
\end{equation*}
$$

We may now transform the classical behaviour (2) in t-representation, i.e.

$$
\begin{equation*}
m(n, T) \sim \bar{m}_{n}\left[R\left(T_{\mathrm{c}, n}\right) t_{\mathrm{c}, n}\right]^{\hat{\beta}}\left[\tau_{n}(t)\right]^{\dot{\beta}}=\bar{m}_{n}^{t}\left[\tau_{n}(t)\right]^{\beta} \quad t \rightarrow t_{c, n} \tag{46a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{n}(t)=\left(t_{\mathrm{c}, n}-t\right) / t_{\mathrm{c}, n} \tag{46b}
\end{equation*}
$$

It follows that the classical amplitudes \bar{m}_{n} and \bar{m}_{n}^{r} in the two representations should satisfy

$$
\begin{equation*}
\bar{m}_{n}^{\prime}=\left[R\left(T_{\mathrm{c}, n}\right) t_{\mathrm{c}, n}\right]^{\beta} \bar{m}_{n} . \tag{47}
\end{equation*}
$$

Assuming that (10) is obeyed and since $\beta<\dot{\beta}$ the above transformation shows (because of the term $t_{\mathrm{c}, n}^{\beta}$ in (47)), that $\bar{m}_{n} \rightarrow \infty$ whereas $\bar{m}_{n}^{t} \rightarrow 0$ as $n \rightarrow \infty$. Furthermore assuming that (23) is also obeyed we may write

$$
\begin{equation*}
\bar{m}_{n}^{\prime} \sim m\left(n, T_{c}^{*}\right) \sim t_{c, n}^{\beta} \tag{48}
\end{equation*}
$$

Thus in a fashion analogous to (11) and (24) we may define the sequences $\beta_{n_{n}^{\prime}}^{t}(n+1, n)$ and $\beta_{m^{*}}^{t}(n+1, n)$ by

$$
\begin{align*}
& \beta_{\bar{m}^{\prime}}^{\prime}(n+1, n)=\log \left(\bar{m}_{n+1}^{\prime} / \bar{m}_{n}^{\prime}\right) / \log \left(t_{\mathrm{c}, n+1} / t_{\mathrm{c}, n}\right) \tag{49}\\
& \beta_{m n^{*}}^{\prime}(n+1, n)=\log \left[m\left(n+1, T_{\mathrm{c}}^{*}\right) / m\left(n, T_{\mathrm{c}}^{*}\right)\right] / \log \left(t_{\mathrm{c}, n+1} / t_{\mathrm{c}, n}\right) \tag{50}
\end{align*}
$$

respectively.

Table 1. The critical temperatures $t_{\mathrm{c}, n}, T_{\mathrm{c}, n}$ and C_{n} at the critical point for $n=2-20$.

n	$t_{\mathrm{c}, n}$	$k_{\mathrm{B}} T_{\mathrm{c}, n} / J$	C_{n}
2	$0.3888361828857 \mathrm{E}+00$	2.4256657339651	$0.1703416699163 \mathrm{E}+00$
3	$0.5570835197377 \mathrm{E}-01$	2.2940443707466	$0.692 .2162011541 \mathrm{E}-01$
4	$0.1353360610379 \mathrm{E}-01$	2.2753149184824	$0.3447012798683 \mathrm{E}-01$
5	$0.4139772137161 \mathrm{E}-02$	2.2710666301302	$0.191089581900 \mathrm{E}-01$
6	$0.1458974258379 \mathrm{E}-02$	2.2698489860314	$0.1135175501645 \mathrm{E}-01$
7	$0.5680445481742 \mathrm{E}-03$	2.2694437948837	$0.7084791032891 \mathrm{E}-02$
8	$0.2384697144168 \mathrm{E}-03$	2.2692938394380	$0.4590798535011 \mathrm{E}-02$
9	$0.1062651188318 \mathrm{E}-03$	2.2692336767387	$0.3064653201948 \mathrm{E}-02$
10	$0.4972075964870 \mathrm{E}-04$	2.2692079431881	$0.2096336456279 \mathrm{E}-02$
11	$0.2423486774489 \mathrm{E}-04$	2.2691963441184	$0.1463575744315 \mathrm{E}-02$
12	$0.1223223053447 \mathrm{E}-04$	2.2691908814368	$0.1039798072890 \mathrm{E}-02$
13	$0.6363789607495 \mathrm{E}-05$	2.2691882105545	$0.7499887055335 \mathrm{E}-03$
14	$0.3399895769465 \mathrm{E}-05$	2.2691868616038	$0.5481885244944 \mathrm{E}-03$
15	$0.1859739404011 \mathrm{E}-05$	2.2691861606346	$0.4054369742955 \mathrm{E}-03$
16	$0.1038964203303 \mathrm{E}-05$	2.2691857870761	$0.3030384158659 \mathrm{E}-03$
17	$0.5915783239215 \mathrm{E}-06$	2.2691855834577	$0.228667039797 \mathrm{E}-03$
18	$0.3427096199946 \mathrm{E}-06$	2.2691854701902	$0.1740446260127 \mathrm{E}-03$
19	$0.2016935272402 \mathrm{E}-06$	2.2691854060097	$0.1335191215006 \mathrm{E}-03$
20	$0.1204335446552 \mathrm{E}-06$	2.2691853690259	$0.1031742282380 \mathrm{E}-03$

In table 1, the critical temperatures $t_{\mathrm{c}, n}$ and $T_{\mathrm{c}, n}$ are given together with the values of C_{n} at the critical point for $n=2-20$. The results given in this table are accurate to 13 significant figures and agree completely with the 11 significant figures given by Tsang [8]. Since $t_{\mathrm{c}, n}$ and C_{n} were obtained by independent extrapolations the equation (44a) served as a good test of our accuracy.

In table 2, the spontaneous magnetizations at the exact critical temperature $m\left(n, T_{\mathrm{c}}^{*}\right)$ and the amplitude \bar{m}_{n} (in T-representation) and \bar{m}_{n}^{t} (in t-representation) are

Table 2. Spontaneous magnetizations $m\left(n, T_{c}^{*}\right)$ at the exact critical temperature and the classical amplitudes \bar{m}_{n} and \bar{m}_{n}^{T} for $n=2-20$.

n	$m\left(n, T_{c}^{*}\right)$	\bar{m}_{n}	\bar{m}_{n}^{\prime}
2	0.7510998504534	$0.4348202730 \mathrm{E}+01$	$0.1042795749 \mathrm{E}+01$
3	0.6143790081302	$0.1002629783 \mathrm{E}+02$	$0.1033583871 \mathrm{E}+01$
4	0.5221838833766	$0.1865277951 \mathrm{E}+02$	$0.9657929102 \mathrm{E}+00$
5	0.4538649957972	$0.3115151085 \mathrm{E}+02$	$0.8959226185 \mathrm{E}+00$
6	0.4004837767501	$0.4863781389 \mathrm{E}+02$	$0.8314529716 \mathrm{E}+00$
7	0.3573138123122	$0.7245830610 \mathrm{E}+02$	$0.7732107238 \mathrm{E}+00$
8	0.3215396530038	$0.1042294466 \mathrm{E}+03$	$0.7207616538 \mathrm{E}+00$
9	0.2913459452471	$0.1458804197 \mathrm{E}+03$	$0.6734471660 \mathrm{E}+00$
10	0.2654938974786	$0.1997014567 \mathrm{E}+03$	$0.6306270850 \mathrm{E}+00$
11	0.2431012604967	$0.2683983029 \mathrm{E}+03$	$0.5917356262 \mathrm{E}+00$
12	0.2235183509501	$0.3551535258 \mathrm{E}+03$	$0.5562871057 \mathrm{E}+00$
13	0.2062536966728	$0.4636954047 \mathrm{E}+03$	$0.5238680482 \mathrm{E}+00$
14	0.1909271797873	$0.5983752085 \mathrm{E}+03$	$0.4941265624 \mathrm{E}+00$
15	0.1772392941010	$0.7642537426 \mathrm{E}+03$	$0.4667622633 \mathrm{E}+00$
16	0.1649502881579	$0.9671981236 \mathrm{E}+03$	$0.4415175984 \mathrm{E}+00$
17	0.1538656090666	$0.1213989831 \mathrm{E}+04$	$0.4181706482 \mathrm{E}+00$
18	0.1438254944958	$0.1512445175 \mathrm{E}+04$	$0.3965292324 \mathrm{E}+00$
19	0.1346973727837	$0.1871549431 \mathrm{E}+04$	$0.3764261031 \mathrm{E}+00$
20	0.1263702105853	$0.2301605985 \mathrm{E}+04$	$0.3577150218 \mathrm{E}+00$

Table 3. Three sequences of estimates for the critical exponent β (see definitions (24), (11) and (27)). The extrapolations below correspond to three assignments of the parameter a_{m} of the algorithm (\$1).

$n+1$	$\beta_{m}(n+1, n)$	$\beta_{m}(n+1, n)$	$\beta_{m m^{*}(n+1, n)}$
3	0.109216518263688	0.045879842373226	0.096937162923974
4	0.116129674759230	0.056612157129964	0.103776621017411
5	0.118713941405179	0.065792831585284	0.107351608843302
6	0.120090073267272	0.072394784823732	0.109632194945979
7	0.120957417577197	0.077280992115565	0.111240263429201
8	0.121558993689614	0.081047084848797	0.112448025382373
9	0.122002593699642	0.084052600461788	0.113395850202845
10	0.122343969455855	$0.086519107354216 \ldots$	0.114164140290161
11	0.122615119982613	0.088588999426468	0.114802549222611
12	0.122835833 .312747	0.090357689848638	0.115343544913996
13	0.123019049972836	0.091891534490371	0.115809336163923
14	0.123173609102463	0.093238185562961	0.116215678015797
15	0.123305762877845	0.094432819604937	0.116574088773357
16	0.123420062500901	0.095502025046360	0.116893204763371
17	0.123519902971903	0.096466310141064	0.117179642309684
18	0.123607865432535	0.097341790115782	0.117438565043487
19	0.123685956921875	0.098141294459135	0.117674068215510
20	$0.123755742818376 \ldots$	0.098875243870353	0.117889446327698
$a_{m}=0$	0.124697527579979	0.111663526924864	0.122368316209992
	0.124697897973314	0.110324950746364	0.122372136153307
$a_{m}=1$	0.124593813476846	0.111906961614679	0.121610165887981
	0.124617215062186	0.112132258605121	0.121691398595983
a_{m} from (52)	0.124998573727193	0.125409370433708	0.124958116126477
	0.124998518109150	0.125413962122192	0.124950966885229

given, also for $n=2-20$. The amplitudes \bar{m}_{n} and \bar{m}_{n}^{t} were obtained using the formulae (2) and (46), respectively. These values are related by (47) and they agree to 10 significant figures which is also the accuracy we required for the amplitudes. It may be noted here that to obtain the required accuracy in the amplitudes we had to work very close to the critical temperatures $t_{\mathrm{c}, n}$, and also use two independent extrapolation techniques in each case. The values of $m\left(n, T_{c}^{*}\right)$ are also accurate to 13 significant figures, as tested by increasing the accuracy of our solutions.

Table 3 shows the three sequences $\beta_{m^{*}}(n+1, n), \beta_{\bar{n}}(n+1, n)$ and $\beta_{\bar{m}, n}(n+1, n)$ defined in (24), (11) and (27), respectively. The convergence of these sequences, and in particular of the last two, to the true critical exponent $\beta(=0.125)$ is rather slow.

To accelerate the convergence of the sequences we have applied the so-called alternating ε-algorithm defined in [11]

$$
\begin{align*}
& P_{l}^{(m+1)}=P_{l}^{(m)}+1 /\left[Q_{l}^{(m)}-Q_{-1}^{(m)}\right] \tag{51a}\\
& Q_{l}^{(m)}=\alpha_{m} Q^{(m-1)}+1 /\left[P_{l+1}^{(m)}-P_{l}^{(m)}\right] \tag{51b}
\end{align*}
$$

where $Q_{l}^{(-1)}=0$ and $P_{l}^{(0)}=P(l=1, \ldots, N)$ are the first N available terms of the original sequence. The algorithm was applied for three assignments of the parameter α_{m}, namely,
$\alpha_{m}=0$ (Shank's transform), $\alpha_{m}=1$ (Wynn's ε-algorithm) and finally (alternating ε algorithm).

$$
\begin{equation*}
\alpha_{m}=-\left[1-(-1)^{m}\right] / 2 \tag{52}
\end{equation*}
$$

In almost all cases considered in this paper assignment (52) seems to have produced the best estimates. We have therefore given in our tables, below each sequence, the last column ($m=$ max) of extrapolation according to (51a), (51b) and (52), and only in cases where we have remarkable differences we give also the extrapolations for the other two assignments.

One may be inclined from table 3 to conclude that the three sequences of estimates have as their common limit the true critical exponent $\beta=0.125$. However, two of the assignments for α_{m} give for the sequence $\beta_{\bar{m}}(n+1, n)$ extrapolates not very close to 0.125 .

We now turn to a different asymptotic analysis of our results. According to Tsang [8] the values of C_{n} fit extremely accurately to the formula:

$$
\begin{equation*}
C_{n}=1.6817928304 \exp \left[-(4.9348022005 n-4.6263770635)^{1 / 2}\right] . \tag{53}
\end{equation*}
$$

We therefore assume that similar asymptotic laws are followed not only for $t_{\mathrm{c}, n}$ (because of (44b)), but also for $m\left(n, T_{c}^{*}\right)$ and m_{n}^{t}, i.e., we assume

$$
\begin{align*}
& t_{\mathrm{c}, n} \sim r\left(z_{\mathrm{c}, n}\right) C_{n}^{2} \sim A_{t} \exp \left[-\left(B_{i} n+\Gamma_{t}\right)^{1 / 2}\right] \tag{54a}\\
& m(n, t=0) \sim A_{m^{*}} \exp \left[-\left(B_{m^{*}} \cdot n+\Gamma_{m^{*}}\right)^{1 / 2}\right] \tag{54b}\\
& \bar{m}_{n}^{\prime} \sim A_{m^{\prime}} \exp \left[-\left(B_{j^{\prime}} \cdot n+\Gamma_{\bar{m}^{\prime}}\right)^{1 / 2}\right] . \tag{54c}
\end{align*}
$$

The asymptotic behaviour of \bar{m}_{n} should then follow from the combination of (54a), (54c) and (47). Alternatively, we may assume that

$$
\begin{equation*}
\bar{m}_{n} \sim A_{\bar{m}} \exp \left[+\left(B_{\bar{m}} n+\Gamma_{\bar{n}}\right)^{1 / 2}\right] \tag{54d}
\end{equation*}
$$

and obtain m_{n}^{\prime} from (54d), (54a) and (47). We can now see that if (23) is valid, then the coefficients $B_{m n^{*}}$ and B_{r} should satisfy

$$
\begin{equation*}
\beta=\left(B_{m^{*}} / B_{t}\right)^{1 / 2} \tag{55}
\end{equation*}
$$

from which β may be obtained if $B_{n^{*}}$ and B_{t} are known. An analogous relationship should give β from $B_{\bar{m}^{\prime}}$ and B_{1}, and from (10) we should also have

$$
\begin{equation*}
\beta=\dot{\beta}-\left(B_{i \bar{\pi}} / B_{t}\right)^{1 / 2} . \tag{56}
\end{equation*}
$$

In order to apply these relationships we should calculate the coefficients in (54). We can do this by fitting exactly the functions (54) for every three values of n. For instance we may define the sequences $A_{m^{*}}(n), B_{m^{*}}(n)$ and $\Gamma_{m^{*}}(n)(n=3, \ldots, 19)$ as the values that fit exactly three successive estimates of m^{*}, i.e. $m\left(n-1, T_{c}^{*}\right), m\left(n, T_{c}^{*}\right)$ and $m\left(n+1, T_{c}^{*}\right)$ to (54b). The resulting sequences for $m^{*}(54 b)$ and for $\bar{m}(54 d)$ are given in tables (4) and (5), respectively.

Table 4. Fitting of the values $m\left(n, T_{c}^{*}\right)$ for $n=2-20$ to the asymptotic formula (54b). Extrapolations given correspond to the assignment (52) for the parameter a_{m}.

Order	$A_{m^{*}}$	$B_{m^{*}}$	$\Gamma_{m^{*}}$
3	1.468495514410883	0.309795998073952	-0.170081959714988
4	1.463034785386955	0.308584517377469	-0.172926335472207
5	1.462328620143789	0.308449124289896	-0.173379313268722
6	1.462213635881570	0.308429445884962	-0.173464916411396
7	1.462191683275632	0.308426021067377	-0.173483252943640
8	1.462186954284099	0.308425338695964	-0.173487590768238
9	1.462185832702361	0.308425187417561	-0.173488704062798
10	1.462185544762219	0.308425150821306	-0.173489010044268
11	1.462185465732823	0.308425141296414	-0.173489099220250
12	1.462185442762806	0.308425138657725	-0.173489126566479
13	1.462185435738473	0.308425137885371	-0.173489135343910
14	1.462185433499323	0.308425137648882	-0.173489138268179
15	1.462185432755854	0.308425137573231	-0.173489139279328
16	1.462185432496575	0.308425137547748	-0.173489139645443
17	1.462185432403406	0.308425137538882	-0.173489139781675
18	1.462185432360009	0.308425137534877	-0.173489139847235
19	1.462185432377661	0.308425137536460	-0.173489139819738
	1.462185432348565	0.308425137533816	-0.173489139865874

Table 4 shows that ($54 b$) is very well satisfied even for small values of n and that the corresponding coefficients converge very fast to their limits. The same is true for the sequence C_{n} (not shown) for which, in almost complete agreement with (53), we obtain

$$
\begin{equation*}
C_{n}=1.681792830508 \exp \left[-(4.934802200545 n-4.62637706301)^{1 / 2}\right] \tag{53'}
\end{equation*}
$$

We may now apply (55) to obtain an estimate of β. From (54a) and (53') we have $B_{t}=4 \times 4.934802200545$ and from table 4 we take as the best value of $B_{m^{*}}=$ 0.308425137534 , so the resulting estimate for β is according to (55)

$$
\begin{equation*}
\beta=0.124999999999987 . \tag{57}
\end{equation*}
$$

This excellent estimate outlaws any reservations that the values of spontaneous magnetization at the exact critical point obeys the law (23) with β the true critical exponent. Furthermore, an inspection of table 4 shows that an estimate with several significant figures of $B_{m^{*}}$ could be obtained using only, say, the first five variational approximations. Since this is also true for B_{r} (not shown) one could obtain several significant figures of β using only the first 5 or 6 variational approximations. This point may be of great interest since the method could be applied to several unsolved problems where the critical exponent is not exactly known.

Table 5 shows that the situation for the amplitudes \bar{m}_{n} is unconvincing. If the assumed behaviour (54d) is true then it is at least surprising that even for $n=20$ the asymptotic behaviour has not settled. This effect is related to the fact that the parameter

$$
\begin{equation*}
\bar{c}_{n}=\left(\bar{m}_{n}\right)^{1 /(\beta-\beta)}\left(\Delta T_{\mathrm{c}, n}\right) \tag{58}
\end{equation*}
$$

continues to increase even for $n=20$. This parameter may be identified with \bar{c}_{n} used in section 2 if (35) is written as an equality, so that $\bar{g}(n)$ is specified if the functional dependence of \bar{m}_{n} is known. Since \bar{c}_{n} seems to tend to infinity one could recall the

Table 5. Fitting of the classical amplitudes $\bar{m}_{n \prime}$ for $n=2-20$ to the formula (54d).

Order	$A_{\text {m }}$	$B_{\bar{m}}$	$\Gamma_{\text {in }}$
3	0.8040197650	3.5182729157	-4.1875596051
4	0.9247660162	3.3445566436	-4.3529506585
5	1.0114482616	3.2526530767	-4.5156495226
6	1.0795467553	3.1945922258	-4.6677555001
7	1.1363800502	3.1536896295	-4.8104437563
8	1.1856705567	3.1228136421	-4.9453709846
9	1.2295105210	3.0984009156	-5.0737978338
10	1.2691871638	3.0784529992	-5.1966452802
11	1.3055527919	3.0617489276	-5.3146075359
12	1.3392058875	3.0474928017	-5.4282308549
13	1.3705855768	3.0351396179	-5.5379577909
14	1.4000259948	3.0243011471	-5.6441573273
15	1.4277883021	3.0146920985	-5.7471417316
16	1.4540815354	3.0060972338	-5.8471799733
17	1.4790760860	2.9983506266	-5.9445060171
18	1.5029123047	2.9913221911	-6.0393223775
19	1.5257087644	2.9849078837	-6.1318114731

discussion at the end of section 2 and observe that our results support scaling (31) and not scaling (30). Thus sequences based on classical amplitudes \bar{m}_{n}, such as (11) or (49), could, but not necessarily, approach in the limit the true critical exponent β. The situation seems worse if we apply ($54 c$) to our data for \bar{m}_{n}^{t}. In this case the sequence for $B_{m^{\prime}}$ (not shown) exhibits an erratic behaviour around a value 0.26 with a very slow tendency to increase for $n>14$. However, the estimates for $B_{\bar{m}^{\prime}}$ do not seem to tend to the value $0.3084 \ldots$ which will be in accord with (48) and give the true critical exponent. To clarify completely this situation and its consequences for the scaling laws (30) and (31) further study would be required, but a convincing explanation will be given below.

To overcome the 'erratic' behaviour of the classical amplitudes we suggest an improvement of the asymptotic relation (48), i.e. we assume that

$$
\begin{equation*}
\bar{m}_{n}^{\prime} \sim n^{\mu} m\left(n, T_{c}^{*}\right) \tag{59}
\end{equation*}
$$

In fact our data support (59) with $\mu=0.25$. The asymptotic relations (54a), (54b) and (59) may now be used in order to accelerate the convergence of sequences (50) and (49). Details of the necessary modifications are given in appendix 1 . It is shown there, that sequence (50) can be replaced by an equivalent sequence (A.1a) which shows a very fast convergence (see table Al) to the true critical exponent. Now, in connection with sequence (49), based on the classical amplitudes, there is also defined in appendix 1 a modified sequence (A. $2 b$) which is included in table (A2) together with sequence (49).

A major improvement is observed for the new sequence (A. $2 b$) and the three extrapolations seem now to point to the same value, namely, the true critical exponent β. Thus we may conclude that all sequences of β-estimates defined in this paper tend to the true value of the critical exponent and the apparently 'erratic' behaviour of the sequences based on the classical amplitudes is an effect of the combination of the power law in (59) with the exponential laws in (54).

We close this section by pointing out that the asymptotic formulae (59) and (54b) with the help of (47), (54a) and (55) determine the functional dependence of \bar{m}_{n} on n.

From (35) one can specify the asymptotic behaviour of an arbitrarily jntroduced function $\bar{g}(n)$

$$
\begin{equation*}
\bar{g}(n) \sim n^{2 / 3} \exp \left[B_{t}^{1 / 2} n^{1 / 2}\right] . \tag{60}
\end{equation*}
$$

The function $\bar{f}(n)$ is specified by requirement $\bar{f}(n) \sim \bar{g}(g)^{-\beta}$ which produces the true critical exponent from scaling (31).

5. Conclusions

In the present paper we have reformulated the 'mean-field scaling theory' in a way that seems very well directed to Baxter's variational approximations.

It has been shown that the approximate critical temperatures, T_{cs}, and spontaneous magnetization at the exact critical point, $m\left(n, T_{c}^{*}\right)$, both obey, in an almost perfect way, similar exponential laws from which the true critical exponent β can be obtained with impressive accuracy. The situation is more complex for the classical amplitudes and the corresponding estimates are slowly converging. However, our analysis conclusively supports the coherent-anomaly method of Suzuki [4-7].

Thus the present paper adds a surprising and unexpected element of generality in the mean-field finite-size scaling theory of Suzuki [4] by showing that 'exponential-law' scaling is possible when the 'canonical approximations' approach the critical point faster than any power law. It is not known whether this novel feature is a peculiar characteristic of Baxter's variational approximations, but one should now suspect that other sequences of mean-field approximations (obtained self-consistently) may as well show up similar novel features. The resulting behaviour seems to be in contradiction with finite-size scaling, and until a well founded explanation is given, one should be careful in interpreting the 'order of approximation' simply as the size of a 'finite system'. One should always have in mind that mean-field theories may crucially depend on the way self-consistency is applied.

However, if the occurrence of these 'perfect exponential laws' is not a coincidence but a general feature of Baxter's series, then the proposed method may prove to be the most efficient tool for calculating non-classical exponents. This hope is supported by our earlier observation that several significant figures of β could be obtained using only the first 5 or 6 variational approximations. It is well known that several variational approximations can be generated for a variety of unsolved problems [3] for which, of course, Tsang's reduction of the number of equations does not apply. We are currently applying the idea of this paper to the Ising model with second-neighbour interaction where the critical exponent β is known by universality. This may well be a necessary step in order to establish the generality of the exponential laws observed in Baxter's variational sequence and may also provide guidance to additional difficulties that may be encountered in other problems in which a convenient t-representation is not available.

Finally, we mentioned that Tsang [8] used $\log -\log$ plots of $\log m(n, t)$ versus $\log \tau_{n}(t)$ in order to estimate the critical exponent β. This method shows very well a crossover phenomenon but it has not been clarified whether and how one could obtain from these plots a systematic series of estimates converging to the true value of the critical exponent.

Table A1. Sequences of estimates for the critical exponent β as defined in (50) and (A.1). Note the fast convergence of the modified sequence $\bar{\beta}_{m^{*}}$. Three cases of the extrapolation algorithm (51) are given.

Order	$\beta_{m^{*}}^{t}$	$\hat{\beta}_{m^{*}}^{*}$
3	0.103408998550813	0.116183827099838
4	0.114909887467937	0.123215401892822
5	0.118375550811812	0.124512880719431
6	0.11997593514722	0.124849926297178
7	0.120916102334786	0.124941369226117
8	0.121542293165194	0.124976389784199
9	0.121995372547265	0.124989819619462
10	0.122340673097077	0.124995362803963
11	0.122613546184953	0.124997789838923
12	0.122835052858757	0.12499995532819
13	0.123018650101289	0.1249943991991
14	0.123173398293576	0.124999705063426
15	0.123305648952527	0.124999840718481
16	0.123419999766907	0.124999912025329
17	0.123519867138467	0.124999950419803
18	0.123607845757691	0.124999971543662
19	0.123685943193266	0.124999983394271
20	0.123755737868767	0.124999990161384
$a_{m}=0$	0.124736379476796	0.124999997205088
	0.124745293861349	0.125000000001709
		0.124700654383830
$a_{m}=1$	0.124703207263248	0.124999999974519
		0.124999999888064
a_{m} from (52)	0.124861315447512	0.124999999960884
	0.124858373496780	0.125000000000927

Appendix 1. On the convergence of $\boldsymbol{\beta}$-estimates

As mentioned in section 4, the convergence of the sequences estimating the critical exponent β (such as (11), (24), (49) and (50)) is rather slow. We present here modifications of these sequences which have the effect of accelerating their convergence. These modifications are inspired from the asymptotic forms (54) and (59). First we replace sequence (50) by

$$
\begin{equation*}
\tilde{\beta}_{m^{*}}^{t}(n+1, n)=\frac{\log \left[m\left(n+1, T_{\mathrm{c}}^{*}\right) / m\left(n, T_{c}^{*}\right)\right]}{\delta_{n+1} \log \tilde{t}_{\mathrm{c}, n+1}-\delta_{n} \log \tilde{t}_{\mathrm{c}, n}} \tag{A.la}
\end{equation*}
$$

where

$$
\tilde{t}_{\mathrm{c}, n}=t_{\mathrm{c}, n} / A_{t}
$$

and the correction factors δ_{n} will be chosen to depend on $\tilde{t}_{\mathrm{c}, n}$ in such a way that the new sequence (A.1) will have the same limit as sequence (50). A general condition for this requirement is, of course

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\delta_{n+1} \log \tilde{t}_{\mathrm{c}, n+1}-\delta_{n} \log \tilde{t}_{\mathrm{c}, n}}{\log \left(t_{\mathrm{c}, n+1} / t_{\mathrm{c}, n}\right)}=1 \tag{A.1c}
\end{equation*}
$$

Table A2. Sequences of estimates for the critical exponent β as defined in (49) and (A.2b). Note the major improvement achieved by the assumption (59) which implies the modification of (49) to (A.2). The three extrapolations point now to the true value.

Order	$\beta_{m^{\prime}}^{\prime}$	$\hat{\beta}_{m}^{\prime}$
3	0.004566623209540	0.046718103996983
4	0.047943670620345	0.093684547901027
5	0.063396501393298	0.107157951266711
6	0.071606863104235	0.112958557893882
7	0.076989254944916	0.116120166185780
8	0.080929203457 t 31	0.118099687738533
9	0.084001633682103	0.119450225367539
10	0.086495839637807	0.120425546023690
11	0.088577888284282	0.121158780506393
12	0.090352178564940	0.121726826232027
13	0.091888710065085	0.122177347854357
14	0.093236696393774	0.122541504800205
15	0.094432014339612	0.122840525946662
16	0.095501579061906	0.123089359928759
17	0.096466060107108	0.123298821744673
18	0.097341643394724	0.123476915130654
19	0.098141216076960	0.123629679038094
20	0.098875187040355	0.123761746806221
$a_{m}=0$	0.114620395141755	0.124967509770696
	0.114631724475007	0.124967547328187
$a_{m}=1$		
	0.112868157807973	0.124921171906689
$a_{m r}$ from (52)	0.113522674167067	0.124973923856405

The choices for these factors can be derived from the assumed asymptotic forms ($54 a$) and (54b) and are

$$
\begin{align*}
& A_{t} \sim 32 \tag{A.1d}\\
& \delta_{n}=\left(1+C \log ^{-2} \tilde{t}_{\mathrm{c}, n}\right)^{1 / 2} \tag{A.1e}
\end{align*}
$$

with

$$
C=\frac{\Gamma_{m^{*}}}{\beta^{2}}-\Gamma_{t} \sim 7.4022033 \ldots
$$

Table A. 1 contains sequence (50) and sequence (A.1). Since the asymptotic forms (54a) and ($54 b$) are very well obeyed the new sequence (A.1) shows, as expected, as very fast convergence to the true critical exponent.

Finally, we modify sequence (49) introducing, as above, correction factors δ_{n} and taking (59) into account, i.e.

$$
\tilde{\beta}_{\bar{m}^{\prime}}(n+1, n)=\frac{\log \left[\tilde{m}^{\prime}(n+1) / \bar{m}^{\prime}(n)\right]}{\delta_{n+1} \log \tilde{t}_{c, n+1}-\delta_{n} \log \tilde{t}_{c, n}}
$$

and

$$
\hat{\beta}_{\bar{m}^{\prime}}(n+1, n)=\tilde{\beta}_{\bar{m}^{\prime}}(n+1, n)+\frac{0.25 \log (n / n+1)}{\delta_{n+1} \log \tilde{t}_{\mathrm{c}, n+1}-\delta_{n} \log \tilde{t}_{\mathrm{c}, n}} .
$$

One can easily show that the correction term in (A. $2 b$) will vanish as $n^{-1 / 2}$ and therefore the new sequence (A. $2 b$) tends to the same limit as sequence (49).

Table A. 2 contains sequence (49) and sequence (A.2) with the same assignments for the factors δ_{n} given in (A.1d-f). The improved sequence strongly suggests that the coherent-anomaly method of Suzuki [4-7], in spite of its slow convergence, also applies to the Baxter variational sequence.

References

[1] Baxter R J 1968 J. Math. Phys. 9650
[2] Baxter R J 1977 J. Stat. Phys. 171
[3] Baxter R J 1978 J. Stat. Phys. 19461
[4] Suzuki M 1986 J. Phys. Soc. Japan 551
[5] Suzuki M 1986 Phys. Lett. 116A 375
[6] Suzuki M 1986 J. Phys. Soc. Japan 554205
[7] Suzuki M 1987 J. Phys. Soc. Japan 563092
[8] Tsang S K 1979 J. Stat. Phys. 2095
[9] Fisher M E 1971 Critical phenomena (Proc. 5lst Enrico Fermi Sumner School, Varena, Italy) ed M S Green (New York: Academic)
[10] Fisher M E and Barber M N 1972 Phys. Rev. Lett, 281516
[11] Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (London: Academic)
[12] Hu X, Katori M and Suzuki M 1987 J. Phys. Soc. Japan 563865
[13] Katori M and Suzuki M 1987 J. Phys. Soc. Japan 563113
[14] Hu X and Suzuki M 1990 J. Phys. A: Math. Gen. 233051
[15] Nonomura Y and Suzuki M 1992 J. Phys A: Math. Gen. 2585
[16] Suzuki M 1988 Phys. Lett. 127A 410
[17] Kelland S B 1976 Can. J. Phys. 541621
[18] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[19] Baxter R J and Enting 1 G 1979 J. Stat. Phys. 21103
[20] Baxter R J, Enting I G and Tsang S K 1980 J. Stat. Phys. 22465
[21] Enting I G 1980 J. Phys. A: Math. Gen. 13 L79
[22] Malakis A 1981 J. Phys. A: Math. Gen. 142767
[23] Baxter R J 1984 J. Phys. A: Math. Gen. 172675
[24] Baxter R J 1993 J. Stat. Phys. 70535

